
The	Decorator	Pattern
Or:	a	lesson	in	the	Open/Closed	principle



How	many	times	have	we	heard	this	phrase:

“Favor	composition	over	inheritance”

~some	OOP	guy	who	is	smarter	than	I	am

The	decorator	pattern	is	another	example	of	how	composition	can	lead	to	
more	flexible	and	ultimately	more	maintainable	class	design.



Coffee	Shop:	Bad	Class	Design

Beverage				
(abstract)

Cost()

HouseBlend

Cost()

DarkRoast

Cost()

Decaf

Cost()

Espresso

Cost()

What	happens	if	we	want	add-ons	like	milk	/	soy	milk	/	mocha?



Coffee	Shop:	Bad	Class	Design
Beverage				
(abstract)

Cost()

HouseBlend

Cost()

DarkRoast

Cost()

Decaf

Cost()

Espresso

Cost()

HouseBlendMilk

Cost()

HouseBlendSoy

Cost()

DarkRoastMilk

Cost()

DarkRoastSoy

Cost()

DecafMilk

Cost()

DecafSoy

Cost()

EspressoMilk

Cost()

EspressoSoy

Cost()

Permutations	get	out	
of	hand	– Class	
Explosions!



Coffee	Shop:	Better	Class	Design
Beverage		
-milk
-soy

Cost()
hasMilk()
hasSoy()

HouseBlend

Cost()

DarkRoast

Cost()

Decaf

Cost()

Espresso

Cost()

cost()	in	beverage	is	invoked	
by	each	cost()	override	in	
subclasses	– rigid	design



Why	is	the	last	design	still	not	optimal?
• Price	changes	for	add-ons	force	us	to	alter	beverage	class	(existing	
code)

• New	add-ons	force	us	to	alter	the	cost	calculation	method	in	the	
superclass

• New	beverages	will	inherit	condiment	methods	that	might	not	be	
appropriate	(i.e.	why	does	Iced	tea	need	mocha?)

• What	if	you	want	more	than	one	pump	of	mocha?



The	Open/Closed	Principle

“Classes	should	be	open	for	extension,	
yet	closed	for	modification”

~Also	some	guy	who	is	smarter	than	I	am

Goal	is	to	allow	classes	to	be	easily	extended	to	incorporate	new	
behavior,	without	modifying	existing	code.	The	benefits	of	this	are	
designs	that	are	both	resilient	to	change and	flexible	enough	to	meet	
changing	requirements.



Decorator	to	the	Rescue!



The	Decorator	Pattern:	Class	Diagram
Abstract

Component

method1()
method2()

Concrete	
Component

method1()
method2()

Abstract
Decorator

-Component	wrappedObj

method1()
method2()

Concrete	
DecoratorA

method1()
method2()

Private	newBehavior()

Concrete	
DecoratorB

- Private	Object	newState

method1()
method2()



Applying	the	Decorator	Pattern

How	would	you	apply	the	decorator	pattern	to	design	for	this	
problem?	

Bonus:	what	if	the	prices	also	varied	by	the	size of	the	pizza?

Say	we	have	a	Pizza	Shop:

- Pizzas	can	be	either	Deep	Dish	or	Thin	Crust	(cost	different	amounts)

- Pizzas	can	have	various	toppings,	like	Pepperoni	and	Cheese
- There	are	4	different	types	of	cheese:	Mozzarella,	Bleu,	Cheddar,	and	
Parmesean.	They	all	cost	different	amounts.

- We	want	to	be	able	to	calculate	the	price of	each	pizza	that	is	made



Abstract	Class	
Pie

abstract	price()

Class
DeepDish

public	price()

Class
ThinCrust

public	price()

Abstract	Class	
ToppingDecorator

- Pie	wrappedPie

abstract	price()

Class
PepperoniDecorator

public	price()
Private	isSpicy()

Class
CheeseDecorator

- CheeseType ct

public	price()

Concrete	Decorators

Concrete	Classes	(Pie)



Applying	the	Decorator	Pattern

“Talk	is	cheap,	show	me	the	code!”

~Puxuan He

https://github.com/bambielli/DecoratorExample



Limitations	of	Decorator
• If	you	have code	that	relies	on	the	concrete	implementation’s	type	
(i.e.	DeepDish or	ThinCrust)	then	Decorator	will	obscure	that	info	
from	you.

• Decorating	your	objects	manually	(like	in	my	example)	is	a	pain.
• Combining	decorators	with	the	Factory or	Builder patterns	makes	creating	
decorated	objects	much	simpler	and	less	prone	to	error!

• It	is	*generally*	against	the	mold	of	decorators	to	peak	at	other	
decorated	layers	to	get	more	context	
• i.e.	what	if	you	wanted	to	know	if	the	user	ordered	double	pepperoni	so	you	
could	print	that	out	on	their	order?	You’d	have	to	know	if	the	current	pizza	
object	is	already	wrapped	by	a	pepperoni	decorator.

• Large	numbers	of	small	classes… harder	to	understand	code



Decorators	and	Javascript



Decorators	and	Javascript
• ES7	feature	– allows	decoration	of	both	functions	and	classes



Decorators	and	Javascript
• ES7	feature	– allows	decoration	of	both	functions	and	classes

• https://medium.com/google-developers/exploring-es7-decorators-
76ecb65fb841ß Addy	Osmani medium	post	on	decorators	(a	bit	old)



Decorators	and	Javascript

• Set	of	“core-decorators”	that	provide	common	annotations	like:
• Deprecate
• ReadOnly
• Enumerable
• Mixin

• Seems	like	JS	decorators	are	still	very	much	in	flux,	though
• Originally	supported	by	Babel	5,	but	no	longer	in	Babel	6
• API	for	decorators	is	still	being	debated
• Need	to	install	babel-plugin-transform-decorators-legacy	for	support	
• That’s	ok,	though,	since	Javascript objects	are	built	for	composability	out	of	the	box	J

https://github.com/jayphelps/core-decorators.js


